Antibiotic Resistance:
A Challenge to Global Health and
A Call for Concerted Action

Anthony D. So, MD, MPA
ReAct Strategic Policy Program
Program on Global Health and Technology Access
Sanford School of Public Policy, Duke University
June 15, 2015

“A future free from the fear of untreatable infections”
Antibiotic Resistance is a Global Threat

Figure 17: Spread of Antibiotic-Resistance Bacteria (ARB)²

Costs

Europe
- EU: ARB costs society ~ €1.5 bn/yr & 600 million days of lost productivity.²⁹
- Russia: ARB a major concern²⁰ with 83.6% of families imprudently use antibiotics at home.²¹

North America
- USA: ARB causes majority of 99,000 deaths/yr from infections acquired in hospitals.²⁶
- USA: Health care costs of ARB are US$21-34 bn/yr.²⁶

Middle East & North Africa
- Egypt: 38% of blood infections contracted by young cancer patients are from ARB.²⁵
- Israel: ARB found fatal in ~ 50% cases when resistant to our strongest antibiotics.²³

South America
- Peru, Bolivia: >51% of hospital infections caused by ARB.²⁷
- Brazil: Rates of ARB are up >60%.²⁸

Sub-Saharan Africa
- Tanzania: Death rate of ARB infected children are double that of malaria.²⁵
- Nigeria: Rapid spread of ARB that came to Africa from Asia.²²

Asia
- Thailand: >140,000 ARB infections/yr and >30,000/yr patients die; 2 bn in productivity losses/yr.²³
- Japan: Extensive levels of ARB found in Tokyo’s urban watershed.²⁰
- China: Extreme over-prescription of antibiotics²¹ and rapid growth rate of ARB.²²
- India: Within 4 years (02-06) ARB went from being resistant to 7, to 21 drugs.²³
- Vietnam: Farming practices contributing to spread of ARB through environmental contamination.²⁴
- Pakistan: 71% of infections in newborns are from ARB.²⁵

Growing Resistance

Tackling Antibiotic Resistance as an Intersectoral Challenge

- **Conservation:** Promoting Rational Use of Antibiotics
- **Innovation**
- **Access**
- **Conservation:** Ecological Responsibility – Non Human Use of Antibiotics

Reimagining Resistance: Sustainability and Systems Thinking
Access, but not Excess

Pneumonia: Fewer than one in three children with suspected pneumonia received antibiotics when necessary.

Diarrhea: Fewer than four in ten children received appropriate treatment with oral rehydration therapy and continued feeding, yet many received unnecessary antibiotics.

Source: Pneumonia and diarrhoea: Tackling the deadliest disease for the world’s poorest children. UNICEF. 2012.
Maternal and child health

Basic health care

Modern medicine
R&D Pipeline Analyses Consistently Show Shortfall

- Spellberg, et al., 2004
- Freire-Moran, et al., 2011 (EMA-ECDC-ReAct)
- IDSA 10 X 20 Progress Report, June 2013
- Pew Charitable Trust, Sept 2014

Bottlenecks in the Antibiotics R&D Pipeline

<table>
<thead>
<tr>
<th>Time for Phase</th>
<th>2yr</th>
<th>5yr</th>
<th>1yr</th>
<th>2yr</th>
<th>2yr</th>
<th>0.5yr</th>
<th>1yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS to Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Optimization to Development Candidate (DC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC to Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 to Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 to Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3 to File</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File to Launch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Hit to Phase 2 starts based on GSK data. Phase 2 and Phase 3 success based on Centers for Medicines Research (CMR) 2003 averages for antibacterials (likely based on agents from established classes).

Overcoming Scientific Bottlenecks

- Discovery of antibiotic with novel mechanism of action
- Development of iChip, a new approach to growing the 99% of all species in external environments that cannot be cultured under laboratory conditions
- Work funded by NIH and other public sector and philanthropic agencies

A new antibiotic kills pathogens without detectable resistance

Innovative Financing to Achieve Delinkage

WHO Consultative Expert Working Group on R&D Financing and Coordination

R&D Investment

Delinkage:
Divorcing R&D Funding from Product Pricing

Product Price

Revenue

Price X Quantity

Delinkage:
Divorcing ROI from volume-based sales

Antibiotic Innovation Policy Discussions
Reengineering the Value Chain for Antibiotic Innovation – The 3Rs

- **Discovery**
 - Access to Compound Libraries
- **Clinical Trials**
 - Crossing the Valley of Death
- **Development**
 - Regulatory Approval
- **Delivery**
 - Rational Use

Sharing RESOURCES

Sharing RISKS

Sharing REWARDS

Back to the Future

• 1929: Fleming’s discovery of penicillin
• 1940: Florey and Chain’s crucial experiment
• 1941 on: Committee on Medical Research assists to scale up penicillin production
• 1944: Twenty-one firms produce penicillin

Source: Penicillin mold, CC BY-SA 3.0, http://ahsbiology3.wikispaces.com/file/view/penicillin_g_sm.jpg/135823945/penicillin_g_sm.jpg